Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete Bidirectional Typing for the Calculus of Inductive Constructions (2102.06513v2)

Published 12 Feb 2021 in cs.PL and cs.LO

Abstract: This article presents a bidirectional type system for the Calculus of Inductive Constructions (CIC). It introduces a new judgement intermediate between the usual inference and checking, dubbed constrained inference, to handle the presence of computation in types. The key property of the system is its completeness with respect to the usual undirected one, which has been formally proven in Coq as a part of the MetaCoq project. Although it plays an important role in an ongoing completeness proof for a realistic typing algorithm, the interest of bidirectionality is wider, as it gives insights and structure when trying to prove properties on CIC or design variations and extensions. In particular, we put forward constrained inference, an intermediate between the usual inference and checking judgements, to handle the presence of computation in types.

Citations (11)

Summary

We haven't generated a summary for this paper yet.