Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-source Pseudo-label Learning of Semantic Segmentation for the Scene Recognition of Agricultural Mobile Robots (2102.06386v3)

Published 12 Feb 2021 in cs.CV and cs.RO

Abstract: This paper describes a novel method of training a semantic segmentation model for scene recognition of agricultural mobile robots exploiting publicly available datasets of outdoor scenes that are different from the target greenhouse environments. Semantic segmentation models require abundant labels given by tedious manual annotation. A method to work around it is unsupervised domain adaptation (UDA) that transfers knowledge from labeled source datasets to unlabeled target datasets. However, the effectiveness of existing methods is not well studied in adaptation between heterogeneous environments, such as urban scenes and greenhouses. In this paper, we propose a method to train a semantic segmentation model for greenhouse images without manually labeled datasets of greenhouse images. The core of our idea is to use multiple rich image datasets of different environments with segmentation labels to generate pseudo-labels for the target images to effectively transfer the knowledge from multiple sources and realize a precise training of semantic segmentation. Along with the pseudo-label generation, we introduce state-of-the-art methods to deal with noise in the pseudo-labels to further improve the performance. We demonstrate in experiments with multiple greenhouse datasets that our proposed method improves the performance compared to the single-source baselines and an existing approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.