Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A structural approach to default modelling with pure jump processes (2102.06299v3)

Published 11 Feb 2021 in q-fin.PR

Abstract: We present a general framework for the estimation of corporate default based on a firm's capital structure, when its assets are assumed to follow a pure jump L\'evy processes; this setup provides a natural extension to usual default metrics defined in diffusion (log-normal) models, and allows to capture extreme market events such as sudden drops in asset prices, which are closely linked to default occurrence. Within this framework, we introduce several pure jump processes featuring negative jumps only and derive practical closed formulas for equity prices, which enable us to use a moment-based algorithm to calibrate the parameters from real market data and to estimate the associated default metrics. A notable feature of these models is the redistribution of credit risk towards shorter maturity: this constitutes an interesting improvement to diffusion models, which are known to underestimate short term default probabilities. We also provide extensions to a model featuring both positive and negative jumps and discuss qualitative and quantitative features of the results. For readers convenience, practical tools for model implementation and GitHub links are also included.

Summary

We haven't generated a summary for this paper yet.