Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sur le nombre d'idéaux dont la norme est la valeur d'une forme binaire de degré 3 (2102.06256v1)

Published 11 Feb 2021 in math.NT

Abstract: Let $\mathbb{K}$ be a cyclic extension of degree $3$ of $\mathbb{Q}$. Take $G={\rm Gal}(\mathbb{K}/ \mathbb{Q})$ and $\chi$ the character of a non trivial representation of $G$. In this case, $\chi$ is a non principal Dirichlet character of degree $3$ and the quantity $r_3(n)$ defined by $$r_3(n):=\big(1*\chi*\chi2\big)(n){\rm ,}$$ counts the number of ideals of $O_{\mathbb{K}}$ of norm $n$. In this paper, using a new result on Hooley's Delta function, we prove an asymptotic estimate, in $\xi$, of the quantity $$Q(\xi,\mathcal{R},F):=\sum\limits_{\boldsymbol{x} \in \mathcal{R}(\xi)}{r_3\big(F(\boldsymbol{x})\big)}{\rm ,}$$ for a binary form $F$ of degree $3$ irreducible over $\mathbb{K}$ and $\mathcal{R}$ a good domain of $\mathbb{R}2$, with $$\mathcal{R}(\xi):=\Big{\boldsymbol{x} \in \mathbb{R}2\;:: \frac{\boldsymbol{x}}{\xi} \in \mathcal{R}\Big}{\rm .}$$ We also give a geometric interpretation of the main constant of the asymptotic estimate when the ring $O_{\mathbb{K}}$ is principal.

Summary

We haven't generated a summary for this paper yet.