Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coaction and double-copy properties of configuration-space integrals at genus zero (2102.06206v2)

Published 11 Feb 2021 in hep-th, math-ph, math.MP, and math.NT

Abstract: We investigate configuration-space integrals over punctured Riemann spheres from the viewpoint of the motivic Galois coaction and double-copy structures generalizing the Kawai-Lewellen-Tye (KLT) relations in string theory. For this purpose, explicit bases of twisted cycles and cocycles are worked out whose orthonormality simplifies the coaction. We present methods to efficiently perform and organize the expansions of configuration-space integrals in the inverse string tension $\alpha'$ or the dimensional-regularization parameter $\epsilon$ of Feynman integrals. Generating-function techniques open up a new perspective on the coaction of multiple polylogarithms in any number of variables and analytic continuations in the unintegrated punctures. We present a compact recursion for a generalized KLT kernel and discuss its origin from intersection numbers of Stasheff polytopes and its implications for correlation functions of two-dimensional conformal field theories. We find a non-trivial example of correlation functions in $(\mathfrak{p},2)$ minimal models, which can be normalized to become uniformly transcendental in the $\mathfrak{p} \to \infty$ limit.

Citations (13)

Summary

We haven't generated a summary for this paper yet.