Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangled Representations from Non-Disentangled Models (2102.06204v1)

Published 11 Feb 2021 in cs.LG

Abstract: Constructing disentangled representations is known to be a difficult task, especially in the unsupervised scenario. The dominating paradigm of unsupervised disentanglement is currently to train a generative model that separates different factors of variation in its latent space. This separation is typically enforced by training with specific regularization terms in the model's objective function. These terms, however, introduce additional hyperparameters responsible for the trade-off between disentanglement and generation quality. While tuning these hyperparameters is crucial for proper disentanglement, it is often unclear how to tune them without external supervision. This paper investigates an alternative route to disentangled representations. Namely, we propose to extract such representations from the state-of-the-art generative models trained without disentangling terms in their objectives. This paradigm of post hoc disentanglement employs little or no hyperparameters when learning representations while achieving results on par with existing state-of-the-art, as shown by comparison in terms of established disentanglement metrics, fairness, and the abstract reasoning task. All our code and models are publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Valentin Khrulkov (22 papers)
  2. Leyla Mirvakhabova (8 papers)
  3. Ivan Oseledets (187 papers)
  4. Artem Babenko (43 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.