Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CENTRIS: A Precise and Scalable Approach for Identifying Modified Open-Source Software Reuse (2102.06182v1)

Published 11 Feb 2021 in cs.SE and cs.CR

Abstract: Open-source software (OSS) is widely reused as it provides convenience and efficiency in software development. Despite evident benefits, unmanaged OSS components can introduce threats, such as vulnerability propagation and license violation. Unfortunately, however, identifying reused OSS components is a challenge as the reused OSS is predominantly modified and nested. In this paper, we propose CENTRIS, a precise and scalable approach for identifying modified OSS reuse. By segmenting an OSS code base and detecting the reuse of a unique part of the OSS only, CENTRIS is capable of precisely identifying modified OSS reuse in the presence of nested OSS components. For scalability, CENTRIS eliminates redundant code comparisons and accelerates the search using hash functions. When we applied CENTRIS on 10,241 widely-employed GitHub projects, comprising 229,326 versions and 80 billion lines of code, we observed that modified OSS reuse is a norm in software development, occurring 20 times more frequently than exact reuse. Nonetheless, CENTRIS identified reused OSS components with 91% precision and 94% recall in less than a minute per application on average, whereas a recent clone detection technique, which does not take into account modified and nested OSS reuse, hardly reached 10% precision and 40% recall.

Citations (33)

Summary

We haven't generated a summary for this paper yet.