Meta-Thompson Sampling
Abstract: Efficient exploration in bandits is a fundamental online learning problem. We propose a variant of Thompson sampling that learns to explore better as it interacts with bandit instances drawn from an unknown prior. The algorithm meta-learns the prior and thus we call it MetaTS. We propose several efficient implementations of MetaTS and analyze it in Gaussian bandits. Our analysis shows the benefit of meta-learning and is of a broader interest, because we derive a novel prior-dependent Bayes regret bound for Thompson sampling. Our theory is complemented by empirical evaluation, which shows that MetaTS quickly adapts to the unknown prior.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.