Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Performance Prediction using Interpretable Patterns in Programming Process Data (2102.05765v1)

Published 10 Feb 2021 in cs.LG and cs.SE

Abstract: Instructors have limited time and resources to help struggling students, and these resources should be directed to the students who most need them. To address this, researchers have constructed models that can predict students' final course performance early in a semester. However, many predictive models are limited to static and generic student features (e.g. demographics, GPA), rather than computing-specific evidence that assesses a student's progress in class. Many programming environments now capture complete time-stamped records of students' actions during programming. In this work, we leverage this rich, fine-grained log data to build a model to predict student course outcomes. From the log data, we extract patterns of behaviors that are predictive of students' success using an approach called differential sequence mining. We evaluate our approach on a dataset from 106 students in a block-based, introductory programming course. The patterns extracted from our approach can predict final programming performance with 79% accuracy using only the first programming assignment, outperforming two baseline methods. In addition, we show that the patterns are interpretable and correspond to concrete, effective -- and ineffective -- novice programming behaviors. We also discuss these patterns and their implications for classroom instruction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ge Gao (70 papers)
  2. Samiha Marwan (4 papers)
  3. Thomas W. Price (2 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.