Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A better lower bound for Lower-Left Anchored Rectangle Packing (2102.05747v1)

Published 10 Feb 2021 in cs.CG and cs.DS

Abstract: Given any set of points $S$ in the unit square that contains the origin, does a set of axis aligned rectangles, one for each point in $S$, exist, such that each of them has a point in $S$ as its lower-left corner, they are pairwise interior disjoint, and the total area that they cover is at least 1/2? This question is also known as Freedman's conjecture (conjecturing that such a set of rectangles does exist) and has been open since Allen Freedman posed it in 1969. In this paper, we improve the best known lower bound on the total area that can be covered from 0.09121 to 0.1039. Although this step is small, we introduce new insights that push the limits of this analysis. Our lower bound uses a greedy algorithm with a particular order of the points in $S$. Therefore, it also implies that this greedy algorithm achieves an approximation ratio of 0.1039. We complement the result with an upper bound of 3/4 on the approximation ratio for a natural class of greedy algorithms that includes the one that achieves the lower bound.

Citations (1)

Summary

We haven't generated a summary for this paper yet.