Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Robinson geometries (2102.05634v3)

Published 10 Feb 2021 in math.DG, gr-qc, hep-th, math-ph, and math.MP

Abstract: We investigate the geometry of almost Robinson manifolds, Lorentzian analogues of almost Hermitian manifolds, defined by Nurowski and Trautman as Lorentzian manifolds of even dimension equipped with a totally null complex distribution of maximal rank. Associated to such a structure, there is a congruence of null curves, which, in dimension four, is geodesic and non-shearing if and only if the complex distribution is involutive. Under suitable conditions, the distribution gives rise to an almost Cauchy-Riemann structure on the leaf space of the congruence. We give a comprehensive classification of such manifolds on the basis of their intrinsic torsion. This includes an investigation of the relation between an almost Robinson structure and the geometric properties of the leaf space of its congruence. We also obtain conformally invariant properties of such a structure, and we finally study an analogue of so-called generalised optical geometries as introduced by Robinson and Trautman.

Summary

We haven't generated a summary for this paper yet.