From Sampling to Optimization on Discrete Domains with Applications to Determinant Maximization (2102.05347v3)
Abstract: We show a connection between sampling and optimization on discrete domains. For a family of distributions $\mu$ defined on size $k$ subsets of a ground set of elements that is closed under external fields, we show that rapid mixing of natural local random walks implies the existence of simple approximation algorithms to find $\max \mu(\cdot)$. More precisely we show that if (multi-step) down-up random walks have spectral gap at least inverse polynomially large in $k$, then (multi-step) local search can find $\max \mu(\cdot)$ within a factor of $k{O(k)}$. As the main application of our result, we show a simple nearly-optimal $k{O(k)}$-factor approximation algorithm for MAP inference on nonsymmetric DPPs. This is the first nontrivial multiplicative approximation for finding the largest size $k$ principal minor of a square (not-necessarily-symmetric) matrix $L$ with $L+L\intercal\succeq 0$. We establish the connection between sampling and optimization by showing that an exchange inequality, a concept rooted in discrete convex analysis, can be derived from fast mixing of local random walks. We further connect exchange inequalities with composable core-sets for optimization, generalizing recent results on composable core-sets for DPP maximization to arbitrary distributions that satisfy either the strongly Rayleigh property or that have a log-concave generating polynomial.