Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid In-memory Computing Architecture for the Training of Deep Neural Networks (2102.05271v1)

Published 10 Feb 2021 in cs.AR, cs.AI, cs.ET, and cs.LG

Abstract: The cost involved in training deep neural networks (DNNs) on von-Neumann architectures has motivated the development of novel solutions for efficient DNN training accelerators. We propose a hybrid in-memory computing (HIC) architecture for the training of DNNs on hardware accelerators that results in memory-efficient inference and outperforms baseline software accuracy in benchmark tasks. We introduce a weight representation technique that exploits both binary and multi-level phase-change memory (PCM) devices, and this leads to a memory-efficient inference accelerator. Unlike previous in-memory computing-based implementations, we use a low precision weight update accumulator that results in more memory savings. We trained the ResNet-32 network to classify CIFAR-10 images using HIC. For a comparable model size, HIC-based training outperforms baseline network, trained in floating-point 32-bit (FP32) precision, by leveraging appropriate network width multiplier. Furthermore, we observe that HIC-based training results in about 50% less inference model size to achieve baseline comparable accuracy. We also show that the temporal drift in PCM devices has a negligible effect on post-training inference accuracy for extended periods (year). Finally, our simulations indicate HIC-based training naturally ensures that the number of write-erase cycles seen by the devices is a small fraction of the endurance limit of PCM, demonstrating the feasibility of this architecture for achieving hardware platforms that can learn in the field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vinay Joshi (8 papers)
  2. Wangxin He (1 paper)
  3. Jae-sun Seo (22 papers)
  4. Bipin Rajendran (50 papers)

Summary

We haven't generated a summary for this paper yet.