Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-Optimal Exploration in Linear Dynamical Systems (2102.05214v2)

Published 10 Feb 2021 in cs.LG, math.OC, and stat.ML

Abstract: Exploration in unknown environments is a fundamental problem in reinforcement learning and control. In this work, we study task-guided exploration and determine what precisely an agent must learn about their environment in order to complete a particular task. Formally, we study a broad class of decision-making problems in the setting of linear dynamical systems, a class that includes the linear quadratic regulator problem. We provide instance- and task-dependent lower bounds which explicitly quantify the difficulty of completing a task of interest. Motivated by our lower bound, we propose a computationally efficient experiment-design based exploration algorithm. We show that it optimally explores the environment, collecting precisely the information needed to complete the task, and provide finite-time bounds guaranteeing that it achieves the instance- and task-optimal sample complexity, up to constant factors. Through several examples of the LQR problem, we show that performing task-guided exploration provably improves on exploration schemes which do not take into account the task of interest. Along the way, we establish that certainty equivalence decision making is instance- and task-optimal, and obtain the first algorithm for the linear quadratic regulator problem which is instance-optimal. We conclude with several experiments illustrating the effectiveness of our approach in practice.

Citations (17)

Summary

We haven't generated a summary for this paper yet.