Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Privacy for Binary Functions via Randomized Graph Colorings (2102.05172v1)

Published 9 Feb 2021 in cs.IT and math.IT

Abstract: We present a framework for designing differentially private (DP) mechanisms for binary functions via a graph representation of datasets. Datasets are nodes in the graph and any two neighboring datasets are connected by an edge. The true binary function we want to approximate assigns a value (or true color) to a dataset. Randomized DP mechanisms are then equivalent to randomized colorings of the graph. A key notion we use is that of the boundary of the graph. Any two neighboring datasets assigned a different true color belong to the boundary. Under this framework, we show that fixing the mechanism behavior at the boundary induces a unique optimal mechanism. Moreover, if the mechanism is to have a homogeneous behavior at the boundary, we present a closed expression for the optimal mechanism, which is obtained by means of a \emph{pullback} operation on the optimal mechanism of a line graph. For balanced mechanisms, not favoring one binary value over another, the optimal $(\epsilon,\delta)$-DP mechanism takes a particularly simple form, depending only on the minimum distance to the boundary, on $\epsilon$, and on $\delta$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.