Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

There are at most finitely many singular moduli that are S-units (2102.05041v3)

Published 9 Feb 2021 in math.NT, math.AG, and math.DS

Abstract: We show that for every finite set of prime numbers S, there are at most finitely many singular moduli that are S-units. The key new ingredient is that for every prime number p, singular moduli are p-adically disperse. We prove analogous results for the Weber modular functions, the lambda invariants and the McKay-Thompson series associated to the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.

Summary

We haven't generated a summary for this paper yet.