Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Static Mutation Strength Distributions for the $(1+λ)$ Evolutionary Algorithm on OneMax (2102.04944v2)

Published 9 Feb 2021 in cs.NE

Abstract: Most evolutionary algorithms have parameters, which allow a great flexibility in controlling their behavior and adapting them to new problems. To achieve the best performance, it is often needed to control some of the parameters during optimization, which gave rise to various parameter control methods. In recent works, however, similar advantages have been shown, and even proven, for sampling parameter values from certain, often heavy-tailed, fixed distributions. This produced a family of algorithms currently known as "fast evolution strategies" and "fast genetic algorithms". However, only little is known so far about the influence of these distributions on the performance of evolutionary algorithms, and about the relationships between (dynamic) parameter control and (static) parameter sampling. We contribute to the body of knowledge by presenting, for the first time, an algorithm that computes the optimal static distributions, which describe the mutation operator used in the well-known simple $(1+\lambda)$ evolutionary algorithm on a classic benchmark problem OneMax. We show that, for large enough population sizes, such optimal distributions may be surprisingly complicated and counter-intuitive. We investigate certain properties of these distributions, and also evaluate the performance regrets of the $(1+\lambda)$ evolutionary algorithm using commonly used mutation distributions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maxim Buzdalov (18 papers)
  2. Carola Doerr (117 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.