Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Universal Transformation of Data-Driven Models to Control Systems (2102.04722v2)

Published 9 Feb 2021 in math.OC, cs.LG, cs.SY, and eess.SY

Abstract: The advances in data science and machine learning have resulted in significant improvements regarding the modeling and simulation of nonlinear dynamical systems. It is nowadays possible to make accurate predictions of complex systems such as the weather, disease models or the stock market. Predictive methods are often advertised to be useful for control, but the specifics are frequently left unanswered due to the higher system complexity, the requirement of larger data sets and an increased modeling effort. In other words, surrogate modeling for autonomous systems is much easier than for control systems. In this paper we present the framework QuaSiModO (Quantization-Simulation-Modeling-Optimization) to transform arbitrary predictive models into control systems and thus render the tremendous advances in data-driven surrogate modeling accessible for control. Our main contribution is that we trade control efficiency by autonomizing the dynamics - which yields mixed-integer control problems - to gain access to arbitrary, ready-to-use autonomous surrogate modeling techniques. We then recover the complexity of the original problem by leveraging recent results from mixed-integer optimization. The advantages of QuaSiModO are a linear increase in data requirements with respect to the control dimension, performance guarantees that rely exclusively on the accuracy of the predictive model in use, and little prior knowledge requirements in control theory to solve complex control problems.

Citations (10)

Summary

We haven't generated a summary for this paper yet.