Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recursive Backdoors for SAT (2102.04707v1)

Published 9 Feb 2021 in cs.DS, cs.DM, and cs.LO

Abstract: A strong backdoor in a formula $\phi$ of propositional logic to a tractable class $\mathcal{C}$ of formulas is a set $B$ of variables of $\phi$ such that every assignment of the variables in $B$ results in a formula from $\mathcal{C}$. Strong backdoors of small size or with a good structure, e.g. with small backdoor treewidth, lead to efficient solutions for the propositional satisfiability problem SAT. In this paper we propose the new notion of recursive backdoors, which is inspired by the observation that in order to solve SAT we can independently recurse into the components that are created by partial assignments of variables. The quality of a recursive backdoor is measured by its recursive backdoor depth. Similar to the concept of backdoor treewidth, recursive backdoors of bounded depth include backdoors of unbounded size that have a certain treelike structure. However, the two concepts are incomparable and our results yield new tractability results for SAT.

Citations (4)

Summary

We haven't generated a summary for this paper yet.