Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropic Optimal Transport: Geometry and Large Deviations (2102.04397v2)

Published 8 Feb 2021 in math.OC, math.FA, and math.PR

Abstract: We study the convergence of entropically regularized optimal transport to optimal transport. The main result is concerned with the convergence of the associated optimizers and takes the form of a large deviations principle quantifying the local exponential convergence rate as the regularization parameter vanishes. The exact rate function is determined in a general setting and linked to the Kantorovich potential of optimal transport. Our arguments are based on the geometry of the optimizers and inspired by the use of $c$-cyclical monotonicity in classical transport theory. The results can also be phrased in terms of Schr\"odinger bridges.

Citations (54)

Summary

We haven't generated a summary for this paper yet.