Papers
Topics
Authors
Recent
Search
2000 character limit reached

Higher Strong Order Methods for Itô SDEs on Matrix Lie Groups

Published 8 Feb 2021 in math.NA and cs.NA | (2102.04131v1)

Abstract: In this paper we present a general procedure for designing higher strong order methods for It^o stochastic differential equations on matrix Lie groups and illustrate this strategy with two novel schemes that have a strong convergence order of 1.5. Based on the Runge-Kutta--Munthe-Kaas (RKMK) method for ordinary differential equations on Lie groups, we present a stochastic version of this scheme and derive a condition such that the stochastic RKMK has the same strong convergence order as the underlying stochastic Runge-Kutta method. Further, we show how our higher order schemes can be applied in a mechanical engineering as well as in a financial mathematics setting.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.