Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Map Gaussian Processes for Mixed Variable Metamodeling (2102.03935v2)

Published 7 Feb 2021 in stat.ML, cs.AI, cs.LG, and stat.AP

Abstract: Gaussian processes (GPs) are ubiquitously used in sciences and engineering as metamodels. Standard GPs, however, can only handle numerical or quantitative variables. In this paper, we introduce latent map Gaussian processes (LMGPs) that inherit the attractive properties of GPs and are also applicable to mixed data which have both quantitative and qualitative inputs. The core idea behind LMGPs is to learn a continuous, low-dimensional latent space or manifold which encodes all qualitative inputs. To learn this manifold, we first assign a unique prior vector representation to each combination of qualitative inputs. We then use a low-rank linear map to project these priors on a manifold that characterizes the posterior representations. As the posteriors are quantitative, they can be directly used in any standard correlation function such as the Gaussian or Matern. Hence, the optimal map and the corresponding manifold, along with other hyperparameters of the correlation function, can be systematically learned via maximum likelihood estimation. Through a wide range of analytic and real-world examples, we demonstrate the advantages of LMGPs over state-of-the-art methods in terms of accuracy and versatility. In particular, we show that LMGPs can handle variable-length inputs, have an explainable neural network interpretation, and provide insights into how qualitative inputs affect the response or interact with each other. We also employ LMGPs in Bayesian optimization and illustrate that they can discover optimal compound compositions more efficiently than conventional methods that convert compositions to qualitative variables via manual featurization.

Citations (25)

Summary

We haven't generated a summary for this paper yet.