Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projection Robust Wasserstein Barycenters (2102.03390v4)

Published 5 Feb 2021 in cs.LG and stat.ML

Abstract: Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper proposes the projection robust Wasserstein barycenter (PRWB) that has the potential to mitigate the curse of dimensionality. Since PRWB is numerically very challenging to solve, we further propose a relaxed PRWB (RPRWB) model, which is more tractable. The RPRWB projects the probability measures onto a lower-dimensional subspace that maximizes the Wasserstein barycenter objective. The resulting problem is a max-min problem over the Stiefel manifold. By combining the iterative Bregman projection algorithm and Riemannian optimization, we propose two new algorithms for computing the RPRWB. The complexity of arithmetic operations of the proposed algorithms for obtaining an $\epsilon$-stationary solution is analyzed. We incorporate the RPRWB into a discrete distribution clustering algorithm, and the numerical results on real text datasets confirm that our RPRWB model helps improve the clustering performance significantly.

Citations (13)

Summary

We haven't generated a summary for this paper yet.