Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review (2102.03336v3)

Published 5 Feb 2021 in cs.LG

Abstract: Machine learning is playing an increasingly important role in medical image analysis, spawning new advances in the clinical application of neuroimaging. There have been some reviews on machine learning and epilepsy before, and they mainly focused on electrophysiological signals such as electroencephalography (EEG) and stereo electroencephalography (SEEG), while neglecting the potential of neuroimaging in epilepsy research. Neuroimaging has its important advantages in confirming the range of the epileptic region, which is essential in presurgical evaluation and assessment after surgery. However, it is difficult for EEG to locate the accurate epilepsy lesion region in the brain. In this review, we emphasize the interaction between neuroimaging and machine learning in the context of epilepsy diagnosis and prognosis. We start with an overview of epilepsy and typical neuroimaging modalities used in epilepsy clinics, MRI, DWI, fMRI, and PET. Then, we elaborate two approaches in applying machine learning methods to neuroimaging data: i) the conventional machine learning approach combining manual feature engineering and classifiers, ii) the deep learning approach, such as the convolutional neural networks and autoencoders. Subsequently, the application of machine learning on epilepsy neuroimaging, such as segmentation, localization, and lateralization tasks, as well as tasks directly related to diagnosis and prognosis are looked into in detail. Finally, we discuss the current achievements, challenges, and potential future directions in this field, hoping to pave the way for computer-aided diagnosis and prognosis of epilepsy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jie Yuan (65 papers)
  2. Xuming Ran (8 papers)
  3. Keyin Liu (2 papers)
  4. Chen Yao (10 papers)
  5. Yi Yao (49 papers)
  6. Haiyan Wu (18 papers)
  7. Quanying Liu (40 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.