Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks (2102.03322v4)

Published 5 Feb 2021 in cs.LG and cs.AI

Abstract: Given the increasing promise of graph neural networks (GNNs) in real-world applications, several methods have been developed for explaining their predictions. Existing methods for interpreting predictions from GNNs have primarily focused on generating subgraphs that are especially relevant for a particular prediction. However, such methods are not counterfactual (CF) in nature: given a prediction, we want to understand how the prediction can be changed in order to achieve an alternative outcome. In this work, we propose a method for generating CF explanations for GNNs: the minimal perturbation to the input (graph) data such that the prediction changes. Using only edge deletions, we find that our method, CF-GNNExplainer, can generate CF explanations for the majority of instances across three widely used datasets for GNN explanations, while removing less than 3 edges on average, with at least 94\% accuracy. This indicates that CF-GNNExplainer primarily removes edges that are crucial for the original predictions, resulting in minimal CF explanations.

Citations (127)

Summary

We haven't generated a summary for this paper yet.