2000 character limit reached
Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs
Published 5 Feb 2021 in math.NA, cs.NA, and math.PR | (2102.03209v2)
Abstract: Explicit stabilized integrators are an efficient alternative to implicit or semi-implicit methods to avoid the severe timestep restriction faced by standard explicit integrators applied to stiff diffusion problems. In this paper, we provide a fully discrete strong convergence analysis of a family of explicit stabilized methods coupled with finite element methods for a class of parabolic semilinear deterministic and stochastic partial differential equations. Numerical experiments including the semilinear stochastic heat equation with space-time white noise confirm the theoretical findings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.