Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^{N}$ (2102.03001v4)

Published 5 Feb 2021 in math.AP

Abstract: In this paper we study the existence of normalized solutions to the following nonlinear Schr\"{o}dinger equation with critical growth \begin{align*} \left{ \begin{aligned} &-\Delta u=\lambda u+f(u), \quad \quad \hbox{in }\mathbb{R}N,\ &\int_{\mathbb{R}{N}}|u|{2}dx=a{2}, \end{aligned} \right. \end{align*} where $a>0$, $\lambda\in \mathbb{R}$ and $f$ has an exponential critical growth when $N=2$, and $f(t)=\mu |u|{q-2}u+|u|{2*-2}u$ with $q \in (2+\frac{4}{N},2*)$, $\mu>0$ and $2*=\frac{2N}{N-2}$ when $N \geq 3$. Our main results complement some recent results for $N \geq 3$ and it is totally new for $N=2$.

Summary

We haven't generated a summary for this paper yet.