Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference and model selection in general causal time series with exogenous covariates (2102.02870v2)

Published 4 Feb 2021 in math.ST and stat.TH

Abstract: In this paper, we study a general class of causal processes with exogenous covariates, including many classical processes such as the ARMA-GARCH, APARCH, ARMAX, GARCH-X and APARCH-X processes. Under some Lipschitz-type conditions, the existence of a $\tau$-weakly dependent strictly stationary and ergodic solution is established. We provide conditions for the strong consistency and derive the asymptotic distribution of the quasi-maximum likelihood estimator (QMLE), both when the true parameter is an interior point of the parameter's space and when it belongs to the boundary. A significance Wald-type test of parameter is developed. This test is quite extensive and includes the test of nullity of the parameter's components, which in particular, allows us to assess the relevance of the exogenous covariates. Relying on the QMLE of the model, we also propose a penalized criterion to address the problem of the model selection for this class. The weak and the strong consistency of the procedure are established. Finally, Monte Carlo simulations are conducted to numerically illustrate the main results.

Summary

We haven't generated a summary for this paper yet.