Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid consistency and plausibility verification of product data according to FIC (2102.02665v1)

Published 3 Feb 2021 in cs.LG and cs.AI

Abstract: The labelling of food products in the EU is regulated by the Food Information of Customers (FIC). Companies are required to provide the corresponding information regarding nutrients and allergens among others. With the rise of e-commerce more and more food products are sold online. There are often errors in the online product descriptions regarding the FIC-relevant information due to low data quality in the vendors' product data base. In this paper we propose a hybrid approach of both rule-based and machine learning to verify nutrient declaration and allergen labelling according to FIC requirements. Special focus is given to the problem of false negatives in allergen prediction since this poses a significant health risk to customers. Results show that a neural net trained on a subset of the ingredients of a product is capable of predicting the allergens contained with a high reliability.

Summary

We haven't generated a summary for this paper yet.