Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internal-wave billiards in trapezoids and similar tables (2102.01654v4)

Published 2 Feb 2021 in math.DS, math-ph, and math.MP

Abstract: We call internal-wave billiard the dynamical system of a point particle that moves freely inside a planar domain (the table) and is reflected by its boundary according to this rule: reflections are standard Fresnel reflections but with the pretense that the boundary at any collision point is either horizontal or vertical (relative to a predetermined direction representing gravity). These systems are point particle approximations for the motion of internal gravity waves in closed containers, hence the name. For a class of tables similar to rectangular trapezoids, but with the slanted leg replaced by a general curve with downward concavity, we prove that the dynamics has only three asymptotic regimes: (1) there exist a global attractor and a global repellor, which are periodic and might coincide; (2) there exists a beam of periodic trajectories, whose boundary (if any) comprises an attractor and a repellor for all the other trajectories; (3) all trajectories are dense (that is, the system is minimal). Furthermore, in the prominent case where the table is an actual trapezoid, we study the sets in parameter space relative to the three regimes. We prove in particular that the set for (1) has positive measure (giving a rigorous proof of the existence of Arnol'd tongues for internal-wave billiards), whereas the sets for (2) and (3) are non-empty but have measure zero.

Summary

We haven't generated a summary for this paper yet.