Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Method of Cumulants for the Normal Approximation (2102.01459v2)

Published 2 Feb 2021 in math.PR

Abstract: The survey is dedicated to a celebrated series of quantitave results, developed by the Lithuanian school of probability, on the normal approximation for a real-valued random variable. The key ingredient is a bound on cumulants of the type $|\kappa_j(X)| \leq j!{1+\gamma} /\Delta{j-2}$, which is weaker than Cram\'er's condition of finite exponential moments. We give a self-contained proof of some of the "main lemmas" in a book by Saulis and Statulevi\v{c}ius (1989), and an accessible introduction to the Cram\'er-Petrov series. In addition, we explain relations with heavy-tailed Weibull variables, moderate deviations, and mod-phi convergence. We discuss some methods for bounding cumulants such as summability of mixed cumulants and dependency graphs, and briefly review a few recent applications of the method of cumulants for the normal approximation.

Summary

We haven't generated a summary for this paper yet.