Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoFreeze: Automatically Freezing Model Blocks to Accelerate Fine-tuning (2102.01386v2)

Published 2 Feb 2021 in cs.LG

Abstract: With the rapid adoption of ML, a number of domains now use the approach of fine tuning models which were pre-trained on a large corpus of data. However, our experiments show that even fine-tuning on models like BERT can take many hours even when using modern accelerators like GPUs. While prior work proposes limiting the number of layers that are fine-tuned, e.g., freezing all layers but the last layer, we find that such static approaches lead to reduced accuracy. We propose, AutoFreeze, a system that uses an adaptive approach to choose which layers are trained and show how this can accelerate model fine-tuning while preserving accuracy. We also develop mechanisms to enable efficient caching of intermediate activations which can reduce the forward computation time when performing fine-tuning. We extend AutoFreeze to perform distributed fine-tuning and design two execution modes that minimize cost and running time respectively. Our evaluation on ten NLP tasks shows that AutoFreeze, with caching enabled, can improve fine-tuning on a single GPU by up to 2.55x. On a 64 GPU cluster, for fine-tuning on the AG's news dataset, AutoFreeze is able to achieve up to 4.38x speedup when optimizing for end-to-end training time and 5.03x reduction in total cost when optimizing for efficiency, without affecting model accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuhan Liu (103 papers)
  2. Saurabh Agarwal (19 papers)
  3. Shivaram Venkataraman (48 papers)
Citations (49)