Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internal Language Model Training for Domain-Adaptive End-to-End Speech Recognition (2102.01380v2)

Published 2 Feb 2021 in eess.AS, cs.AI, cs.CL, cs.LG, and cs.SD

Abstract: The efficacy of external LLM (LM) integration with existing end-to-end (E2E) automatic speech recognition (ASR) systems can be improved significantly using the internal LLM estimation (ILME) method. In this method, the internal LM score is subtracted from the score obtained by interpolating the E2E score with the external LM score, during inference. To improve the ILME-based inference, we propose an internal LM training (ILMT) method to minimize an additional internal LM loss by updating only the E2E model components that affect the internal LM estimation. ILMT encourages the E2E model to form a standalone LM inside its existing components, without sacrificing ASR accuracy. After ILMT, the more modular E2E model with matched training and inference criteria enables a more thorough elimination of the source-domain internal LM, and therefore leads to a more effective integration of the target-domain external LM. Experimented with 30K-hour trained recurrent neural network transducer and attention-based encoder-decoder models, ILMT with ILME-based inference achieves up to 31.5% and 11.4% relative word error rate reductions from standard E2E training with Shallow Fusion on out-of-domain LibriSpeech and in-domain Microsoft production test sets, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Zhong Meng (53 papers)
  2. Naoyuki Kanda (61 papers)
  3. Yashesh Gaur (43 papers)
  4. Sarangarajan Parthasarathy (9 papers)
  5. Eric Sun (14 papers)
  6. Liang Lu (42 papers)
  7. Xie Chen (165 papers)
  8. Jinyu Li (164 papers)
  9. Yifan Gong (82 papers)
Citations (52)