Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Asymptotic Theory of Joint Sequential Changepoint Detection and Identification for General Stochastic Models (2102.01306v2)

Published 2 Feb 2021 in math.ST, math.PR, and stat.TH

Abstract: The paper addresses a joint sequential changepoint detection and identification/isolation problem for a general stochastic model, assuming that the observed data may be dependent and non-identically distributed, the prior distribution of the change point is arbitrary, and the post-change hypotheses are composite. The developed detection-identification theory generalizes the changepoint detection theory developed by Tartakovsky (2019) to the case of multiple composite post-change hypotheses when one has not only to detect a change as quickly as possible but also to identify (or isolate) the true post-change distribution. We propose a multi-hypothesis change detection-identification rule and show that it is nearly optimal, minimizing moments of the delay to detection as the probability of a false alarm and the probabilities of misidentification go to zero.

Summary

We haven't generated a summary for this paper yet.