Papers
Topics
Authors
Recent
2000 character limit reached

Twisted Derived Equivalences and Isogenies between K3 Surfaces in Positive Characteristic

Published 1 Feb 2021 in math.AG and math.NT | (2102.01193v2)

Abstract: We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $\ell$-adic and crystalline cohomology groups of $X$. This is a positive characteristic analog of a result of Huybrechts, and extends results of the second author. We give applications to the reduction types of K3 surfaces and to the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai lattices in positive characteristic, which may be of independent interest. We also prove some results on lifting twisted Fourier--Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.