Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Music Information Dynamics (2102.01133v1)

Published 1 Feb 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Music comprises of a set of complex simultaneous events organized in time. In this paper we introduce a novel framework that we call Deep Musical Information Dynamics, which combines two parallel streams - a low rate latent representation stream that is assumed to capture the dynamics of a thought process contrasted with a higher rate information dynamics derived from the musical data itself. Motivated by rate-distortion theories of human cognition we propose a framework for exploring possible relations between imaginary anticipations existing in the listener's mind and information dynamics of the musical surface itself. This model is demonstrated for the case of symbolic (MIDI) data, as accounting for acoustic surface would require many more layers to capture instrument properties and performance expressive inflections. The mathematical framework is based on variational encoding that first establishes a high rate representation of the musical observations, which is then reduced using a bit-allocation method into a parallel low rate data stream. The combined loss considered here includes both the information rate in terms of time evolution for each stream, and the fidelity of encoding measured in terms of mutual information between the high and low rate representations. In the simulations presented in the paper we are able to juxtapose aspects of latent/imaginary surprisal versus surprisal of the music surface in a manner that is quantifiable and computationally tractable. The set of computational tools is discussed in the paper, suggesting that a trade off between compression and prediction are an important factor in the analysis and design of time-based music generative models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.