Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Online Convex Optimization. Application to probabilistic time series forecasting (2102.00729v3)

Published 1 Feb 2021 in cs.LG, math.ST, and stat.TH

Abstract: We introduce a general framework of stochastic online convex optimization to obtain fast-rate stochastic regret bounds. We prove that algorithms such as online newton steps and a scale-free 10 version of Bernstein online aggregation achieve best-known rates in unbounded stochastic settings. We apply our approach to calibrate parametric probabilistic forecasters of non-stationary sub-gaussian time series. Our fast-rate stochastic regret bounds are any-time valid. Our proofs combine self-bounded and Poissonnian inequalities for martingales and sub-gaussian random variables, respectively, under a stochastic exp-concavity assumption.

Citations (5)

Summary

We haven't generated a summary for this paper yet.