Papers
Topics
Authors
Recent
2000 character limit reached

On profinite polyadic groups

Published 1 Feb 2021 in math.GR | (2102.00694v2)

Abstract: We study the structure of profinite polyadic groups and we prove that a polyadic topological group $(G, f)$ is profinite, if and only if, it is compact, Hausdorff, totally disconnected. More generally, for a pseudo-variety (or a formation) of finite groups $\mathfrak{X}$, we define the class of $\mathfrak{X}$-polyadic groups, and we show that a polyadic group $(G, f)$ is pro-$\mathfrak{X}$, if and only if, it is compact, Hausdorff, totally disconnected and for every open congruence $R$, the quotient $(G/R, f_R)$ is $\mathfrak{X}$-polyadic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.