Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computation of multi-degree Tchebycheffian B-splines (2102.00418v1)

Published 31 Jan 2021 in math.NA and cs.NA

Abstract: Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called MDTB-spline basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in Matlab. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.

Citations (10)

Summary

We haven't generated a summary for this paper yet.