Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Reenactment as Inductive Bias for Content-Motion Disentanglement (2102.00324v3)

Published 30 Jan 2021 in cs.CV and cs.LG

Abstract: Independent components within low-dimensional representations are essential inputs in several downstream tasks, and provide explanations over the observed data. Video-based disentangled factors of variation provide low-dimensional representations that can be identified and used to feed task-specific models. We introduce MTC-VAE, a self-supervised motion-transfer VAE model to disentangle motion and content from videos. Unlike previous work on video content-motion disentanglement, we adopt a chunk-wise modeling approach and take advantage of the motion information contained in spatiotemporal neighborhoods. Our model yields independent per-chunk representations that preserve temporal consistency. Hence, we reconstruct whole videos in a single forward-pass. We extend the ELBO's log-likelihood term and include a Blind Reenactment Loss as an inductive bias to leverage motion disentanglement, under the assumption that swapping motion features yields reenactment between two videos. We evaluate our model with recently-proposed disentanglement metrics and show that it outperforms a variety of methods for video motion-content disentanglement. Experiments on video reenactment show the effectiveness of our disentanglement in the input space where our model outperforms the baselines in reconstruction quality and motion alignment.

Citations (2)

Summary

We haven't generated a summary for this paper yet.