Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP (2101.12745v4)

Published 29 Jan 2021 in cs.LG

Abstract: This paper presents new \emph{variance-aware} confidence sets for linear bandits and linear mixture Markov Decision Processes (MDPs). With the new confidence sets, we obtain the follow regret bounds: For linear bandits, we obtain an $\tilde{O}(poly(d)\sqrt{1 + \sum_{k=1}{K}\sigma_k2})$ data-dependent regret bound, where $d$ is the feature dimension, $K$ is the number of rounds, and $\sigma_k2$ is the \emph{unknown} variance of the reward at the $k$-th round. This is the first regret bound that only scales with the variance and the dimension but \emph{no explicit polynomial dependency on $K$}. When variances are small, this bound can be significantly smaller than the $\tilde{\Theta}\left(d\sqrt{K}\right)$ worst-case regret bound. For linear mixture MDPs, we obtain an $\tilde{O}(poly(d, \log H)\sqrt{K})$ regret bound, where $d$ is the number of base models, $K$ is the number of episodes, and $H$ is the planning horizon. This is the first regret bound that only scales \emph{logarithmically} with $H$ in the reinforcement learning with linear function approximation setting, thus \emph{exponentially improving} existing results, and resolving an open problem in \citep{zhou2020nearly}. We develop three technical ideas that may be of independent interest: 1) applications of the peeling technique to both the input norm and the variance magnitude, 2) a recursion-based estimator for the variance, and 3) a new convex potential lemma that generalizes the seminal elliptical potential lemma.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zihan Zhang (121 papers)
  2. Jiaqi Yang (107 papers)
  3. Xiangyang Ji (159 papers)
  4. Simon S. Du (120 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.