Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Learning for Road Object Detection (2101.12543v2)

Published 29 Jan 2021 in cs.CV

Abstract: Few-shot learning is a problem of high interest in the evolution of deep learning. In this work, we consider the problem of few-shot object detection (FSOD) in a real-world, class-imbalanced scenario. For our experiments, we utilize the India Driving Dataset (IDD), as it includes a class of less-occurring road objects in the image dataset and hence provides a setup suitable for few-shot learning. We evaluate both metric-learning and meta-learning based FSOD methods, in two experimental settings: (i) representative (same-domain) splits from IDD, that evaluates the ability of a model to learn in the context of road images, and (ii) object classes with less-occurring object samples, similar to the open-set setting in real-world. From our experiments, we demonstrate that the metric-learning method outperforms meta-learning on the novel classes by (i) 11.2 mAP points on the same domain, and (ii) 1.0 mAP point on the open-set. We also show that our extension of object classes in a real-world open dataset offers a rich ground for few-shot learning studies.

Citations (20)

Summary

We haven't generated a summary for this paper yet.