Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covert Model Poisoning Against Federated Learning: Algorithm Design and Optimization (2101.11799v1)

Published 28 Jan 2021 in cs.LG and cs.DC

Abstract: Federated learning (FL), as a type of distributed machine learning frameworks, is vulnerable to external attacks on FL models during parameters transmissions. An attacker in FL may control a number of participant clients, and purposely craft the uploaded model parameters to manipulate system outputs, namely, model poisoning (MP). In this paper, we aim to propose effective MP algorithms to combat state-of-the-art defensive aggregation mechanisms (e.g., Krum and Trimmed mean) implemented at the server without being noticed, i.e., covert MP (CMP). Specifically, we first formulate the MP as an optimization problem by minimizing the Euclidean distance between the manipulated model and designated one, constrained by a defensive aggregation rule. Then, we develop CMP algorithms against different defensive mechanisms based on the solutions of their corresponding optimization problems. Furthermore, to reduce the optimization complexity, we propose low complexity CMP algorithms with a slight performance degradation. In the case that the attacker does not know the defensive aggregation mechanism, we design a blind CMP algorithm, in which the manipulated model will be adjusted properly according to the aggregated model generated by the unknown defensive aggregation. Our experimental results demonstrate that the proposed CMP algorithms are effective and substantially outperform existing attack mechanisms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.