Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Powering COVID-19 community Q&A with Curated Side Information (2101.11556v1)

Published 27 Jan 2021 in cs.IR and cs.HC

Abstract: Community question answering and discussion platforms such as Reddit, Yahoo! answers or Quora provide users the flexibility of asking open ended questions to a large audience, and replies to such questions maybe useful both to the user and the community on certain topics such as health, sports or finance. Given the recent events around COVID-19, some of these platforms have attracted 2000+ questions from users about several aspects associated with the disease. Given the impact of this disease on general public, in this work we investigate ways to improve the ranking of user generated answers on COVID-19. We specifically explore the utility of external technical sources of side information (such as CDC guidelines or WHO FAQs) in improving answer ranking on such platforms. We found that ranking user answers based on question-answer similarity is not sufficient, and existing models cannot effectively exploit external (side) information. In this work, we demonstrate the effectiveness of different attention based neural models that can directly exploit side information available in technical documents or verified forums (e.g., research publications on COVID-19 or WHO website). Augmented with a temperature mechanism, the attention based neural models can selectively determine the relevance of side information for a given user question, while ranking answers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Manisha Verma (14 papers)
  2. Kapil Thadani (5 papers)
  3. Shaunak Mishra (15 papers)

Summary

We haven't generated a summary for this paper yet.