COVID-19 Agent-Based Model with Multi-objective Optimization for Vaccine Distribution (2101.11400v1)
Abstract: Now that SARS-CoV-2 (COVID-19) vaccines are developed, it is very important to plan its distribution strategy. In this paper, we formulated a multi-objective linear programming model to optimize vaccine distribution and applied it to the agent-based version of our age-stratified and quarantine-modified SEIR with non-linear incidence rates (ASQ-SEIR-NLIR) compartmental model. Simulations were performed using COVID-19 data from Quezon City and results were analyzed under various scenarios: (1) no vaccination, (2) base vaccination (prioritizing essential workers and vulnerable population), (3) prioritizing mobile workforce, (4) prioritizing elderly, and (5) prioritizing mobile workforce and elderly; in terms of (a) reducing infection rates and (b) reducing mortality incidence. After 10 simulations on distributing 500,000 vaccine courses, results show that prioritizing mobile workforce minimizes further infections by 24.14%, which is better than other scenarios. On the other hand, prioritizing the elderly yields the highest protection (439%) for the Quezon City population compared to other scenarios. This could be due to younger people, when contracted the disease, has higher chances of recovery than the elderly. Thus, this leads to reduction of mortality cases.