Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Route Choice-based Socio-Technical Macroscopic Traffic Model (2101.11133v1)

Published 26 Jan 2021 in eess.SY, cs.SY, and math.OC

Abstract: Human route choice is undeniably one of the key contributing factors towards traffic dynamics. However, most existing macroscopic traffic models are typically concerned with driving behavior and do not incorporate human route choice behavior models in their formulation. In this paper, we propose a socio-technical macroscopic traffic model that characterizes the traffic states using human route choice attributes. Essentially, such model provides a framework for capturing the Cyber-Physical-Social coupling in smart transportation systems. To derive this model, we first use Cumulative Prospect Theory (CPT) to model the human passengers' route choice under bounded rationality. These choices are assumed to be influenced by traffic alerts and other incomplete traffic information. Next, we assume that the vehicles are operating under a non-cooperative cruise control scenario. Accordingly, human route choice segregates the traffic into multiple classes where each class corresponds to a specific route between an origin-destination pair. Thereafter, we derive a Mean Field Game (MFG) limit of this non-cooperative game to obtain a macroscopic model which embeds the human route choice attribute. Finally, we analyze the mathematical characteristics of the proposed model and present simulation studies to illustrate the model behavior.

Citations (2)

Summary

We haven't generated a summary for this paper yet.