Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New upper bounds for $(b,k)$-hashing (2101.10916v1)

Published 26 Jan 2021 in cs.IT, math.CO, and math.IT

Abstract: For fixed integers $b\geq k$, the problem of perfect $(b,k)$-hashing asks for the asymptotic growth of largest subsets of ${1,2,\ldots,b}n$ such that for any $k$ distinct elements in the set, there is a coordinate where they all differ. An important asymptotic upper bound for general $b, k$, was derived by Fredman and Koml\'os in the '80s and improved for certain $b\neq k$ by K\"orner and Marton and by Arikan. Only very recently better bounds were derived for the general $b,k$ case by Guruswami and Riazanov, while stronger results for small values of $b=k$ were obtained by Arikan, by Dalai, Guruswami and Radhakrishnan and by Costa and Dalai. In this paper, we both show how some of the latter results extend to $b\neq k$ and further strengthen the bounds for some specific small values of $b$ and $k$. The method we use, which depends on the reduction of an optimization problem to a finite number of cases, shows that further results might be obtained by refined arguments at the expense of higher complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.