Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On managing vulnerabilities in AI/ML systems (2101.10865v1)

Published 22 Jan 2021 in cs.CR, cs.AI, and cs.LG

Abstract: This paper explores how the current paradigm of vulnerability management might adapt to include machine learning systems through a thought experiment: what if flaws in ML were assigned Common Vulnerabilities and Exposures (CVE) identifiers (CVE-IDs)? We consider both ML algorithms and model objects. The hypothetical scenario is structured around exploring the changes to the six areas of vulnerability management: discovery, report intake, analysis, coordination, disclosure, and response. While algorithm flaws are well-known in the academic research community, there is no apparent clear line of communication between this research community and the operational communities that deploy and manage systems that use ML. The thought experiments identify some ways in which CVE-IDs may establish some useful lines of communication between these two communities. In particular, it would start to introduce the research community to operational security concepts, which appears to be a gap left by existing efforts.

Citations (17)

Summary

We haven't generated a summary for this paper yet.