Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indoor Group Activity Recognition using Multi-Layered HMMs (2101.10857v1)

Published 23 Jan 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Discovery and recognition of Group Activities (GA) based on imagery data processing have significant applications in persistent surveillance systems, which play an important role in some Internet services. The process is involved with analysis of sequential imagery data with spatiotemporal associations. Discretion of video imagery requires a proper inference system capable of discriminating and differentiating cohesive observations and interlinking them to known ontologies. We propose an Ontology based GAR with a proper inference model that is capable of identifying and classifying a sequence of events in group activities. A multi-layered Hidden Markov Model (HMM) is proposed to recognize different levels of abstract GA. The multi-layered HMM consists of N layers of HMMs where each layer comprises of M number of HMMs running in parallel. The number of layers depends on the order of information to be extracted. At each layer, by matching and correlating attributes of detected group events, the model attempts to associate sensory observations to known ontology perceptions. This paper demonstrates and compares performance of three different implementation of HMM, namely, concatenated N-HMM, cascaded C-HMM and hybrid H-HMM for building effective multi-layered HMM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.