Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards glass-box CNNs (2101.10443v3)

Published 11 Jan 2021 in cs.CV and cs.LG

Abstract: With the substantial performance of neural networks in sensitive fields increases the need for interpretable deep learning models. Major challenge is to uncover the multiscale and distributed representation hidden inside the basket mappings of the deep neural networks. Researchers have been trying to comprehend it through visual analysis of features, mathematical structures, or other data-driven approaches. Here, we work on implementation invariances of CNN-based representations and present an analytical binary prototype that provides useful insights for large scale real-life applications. We begin by unfolding conventional CNN and then repack it with a more transparent representation. Inspired by the attainment of neural networks, we choose to present our findings as a three-layer model. First is a representation layer that encompasses both the class information (group invariant) and symmetric transformations (group equivariant) of input images. Through these transformations, we decrease intra-class distance and increase the inter-class distance. It is then passed through a dimension reduction layer followed by a classifier. The proposed representation is compared with the equivariance of AlexNet (CNN) internal representation for better dissemination of simulation results. We foresee following immediate advantages of this toy version: i) contributes pre-processing of data to increase the feature or class separability in large scale problems, ii) helps designing neural architecture to improve the classification performance in multi-class problems, and iii) helps building interpretable CNN through scalable functional blocks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.